Structural Determination of Bulk and Surface Tungsten Oxides with UV-vis Diffuse Reflectance Spectroscopy and Raman Spectroscopy

Elizabeth I. Ross-Medgaarden and Israel E. Wachs*

Operando Molecular Spectroscopy and Catalysis Laboratory, Department of Chemical Engineering, 111 Research Drive, Iacocca Hall, Lehigh University, Bethlehem, Pennsylvania 18015

Received: May 31, 2007; In Final Form: July 27, 2007

Combined UV-vis diffuse reflectance spectroscopy (DRS) and Raman spectroscopy were applied to examine the electronic and molecular structures, respectively, of well-defined W(VI) bulk mixed oxide reference compounds consisting of (i) isolated WO₄ or WO₆ monomers, (ii) dimeric O₃W-O-WO₃, (iii) polymeric chain of alternating WO₄/WO₆ units, and (iv) WO₆-coordinated W₉-W₁₈ clusters. Raman spectroscopy was employed to confirm the identity and phase purity of the different tungsten oxide structures. UV-vis DRS provided the corresponding electronic edge energy (E_g) of the ligand-to-metal charge transfer (LMCT) transitions of the W(VI) cations. A correlation between the edge energy and the number of covalent bridging W-O-W bonds around the central W(VI) cation was found with E_g linearly decreasing with increasing number of bridging W-O-W bonds. However, a direct relationship between E_g and the domain size, N_W , for finite WO_x clusters does not exist. Subsequently, UV-vis and Raman spectroscopy information were applied to determine the local structures of the molecularly dispersed surface W(VI) species present in supported WO₃/Al₂O₃, WO₃/ZrO₂, and WO₃/SiO₂ catalysts under ambient and dehydrated conditions.

1. Introduction

Supported tungsten oxide catalytic materials are extensively used as heterogeneous catalysts for numerous petroleum, chemical, and environmental processes:¹⁻³ $C_4 - C_8$ alkane isomerization (WO₃/ZrO₂),⁴⁻¹⁰ hydrodesulphurization (HDS),¹¹ hydrocarbon cracking (WO_3/Al_2O_3) , ¹²⁻¹⁵ olefin metathesis (WO_3/SiO_2) ,^{16–19} and selective catalytic reduction of NO_x (WO₃/ TiO₂).²⁰⁻²³ Supported tungsten oxide catalysts have been extensively characterized in the literature with various spectroscopic techniques that provide molecular and electronic structural details as well as surface chemical characteristics. 6,9,10,24-32,90 The molecular and electronic structures of the surface WO_x species present in supported WO₃ catalysts, however, are still not completely resolved. Knowledge of the local structure of the surface tungsten oxide species plays an important role in the synthesis and optimization of supported tungsten oxide catalyst systems for targeted applications.

UV-vis diffuse reflectance spectroscopy (DRS) has increasingly been employed to investigate the local structure of W(VI) oxide compounds/mixed oxides,³³⁻³⁴ W(VI) mesoporous materials,³⁵⁻³⁶ W(VI) polyoxometalates,³⁷⁻³⁹ and supported W(VI) catalysts.^{6,10,35,40-47} In these investigations, the local structures of the W(VI) cation is often associated with the band positions of the ligand-to-metal charge transfer (LMCT) transitions in the ultraviolet, visible, and near-infrared regions. An important advantage of the UV-vis spectroscopic technique is its ability to function under ambient, dehydrated, and reaction conditions.⁴⁸⁻⁴⁹

Although the UV-vis DRS LMCT transitions tend to be quite broad, recent publications have indicated that the edge energy (E_g) of the LMCT transition can be quantified and contain information about the local structures of bulk and surface V(V) and Mo(VI) metal oxides.^{50–52} Early studies by Weber⁵² analyzed the UV–vis DRS edge energies of bulk molybdenum oxide samples from a number of different publications and found a correlation between the edge energy and the number of next nearest metal neighbors (N_M) of the Mo oxide compounds (Mo– O–Mo bonds), where *M* represents the degree of aggregation of the MoO_x structure. Analogous UV–vis DRS E_g –structure relationships have successfully been developed by Gao et al.⁵⁰ for oxides of vanadium and successfully applied for the local structural determination of the surface VO_x species present in supported V₂O₅ catalysts.

Several research groups^{6,46–47,53} have extended Weber's methodology to also account for the domain size of the surface WO_x species present in supported WO₃ catalyst systems. No systematic examination between the UV–vis DRS E_g values and the number of covalent W–O–W bonds for tungsten oxide compounds, however, has been reported in the literature.

In the present investigation, UV-vis DRS is employed to establish a quantitative correlation between the number of covalent bridging W-O-W bonds in known bulk mixed metal tungstate and polyoxotungstate structures (isolated, polymeric, clusters, and bulk structures) and their corresponding edge energy (E_g) .^{9,10,54} This quantitative UV-vis DRS E_g -structure correlation, in conjunction with Raman spectroscopy, is subsequently employed to determine the local molecular structures of the surface tungsten oxide species present in the submonolayer surface coverage region on oxide supports (Al₂O₃, ZrO₂, and SiO₂) under ambient and dehydrated conditions. Unlike other spectroscopic techniques such as Raman and IR that give rise to sharp transitions, UV-vis DRS gives rise to broad bands that tend to overlap for multicomponent systems and only provide an average of the molecular-level characteristics. It is for this reason that complementary Raman and XANES data are required for a complete local structural determination of the

^{*} To whom correspondence should be addressed. Phone: (610) 758-4274. Fax: (610) 758-6555. E-mail: iew0@lehigh.edu.

TABLE 1: Bulk Tungstate Reference Compounds

bulk tungstate compound	manufacturer
aluminum tungstate, Al ₂ (WO ₄) ₃	Alfa Aesar, 99%
ammonium metatungstate, (NH ₄) ₆ H ₂ W ₁₂ O ₄₀	Pfaltz & Bauer, Inc,
	99.5%
ammonium paratungstate, (NH ₄) ₁₀ H ₂ W ₁₂ O ₄₂	H.C. Starck, 99%
calcium tungstate, CaWO ₄	Alfa Aesar, 99%
magnesium tungstate, MgWO ₄	Alfa Aesar, 99.5%
nickel tungstate, NiWO ₄	Alfa Aesar, 99%
phosphotungstic acid, H ₃ PW ₁₂ O ₄₀ • <i>x</i> H ₂ O	Aldrich, 99%
potassium tungstate, K ₂ WO ₄	Alfa Aesar, 99.5%
silicotungstic acid, H ₄ SiW ₁₂ O ₄₀ •xH ₂ 0	Aldrich, 99%
sodium 12-tungstophosphate, Na ₃ PW ₁₂ O ₄₀	Strem Chemicals, 99%
sodium tungstate, Na ₂ WO ₄	Alfa Aesar, 98%
tungsten(VI) oxide, WO ₃	Alfa Aesar, 99.8%
	(metals basis)
tungsten zirconia, Zr(WO ₄) ₂	Alfa Aesar, 99.7%
zinc tungstate, ZnWO ₄	Alfa Aesar, 99.7%

surface tungsten oxide species on oxide supports under ambient and dehydrated conditions.

2. Experimental Section

Catalyst Preparation. Most of the bulk tungsten oxide compounds in this study were obtained from commercial suppliers indicated in Table 1, and the compounds were used as received. The bulk metal tungstates of MgW₂O₇, Na₂W₂O₇, and K₂W₂O₇ were prepared by coprecipitation of aqueous ammonium metatungstate, (NH₄)₁₀W₁₂O₄₁•5H₂O (Pfaltz & Bauer, 99.5% purity), and the corresponding metal nitrates (Mg-(NO₃)₂•6H₂O, NaNO₃, and KNO₃, Alfa Aesar, 99.9%) with synthesis methods previously reported.^{55,56,67} Molecular heteropolyoxotungstate Keggin and Wells-Dawson clusters containingW₉–W₁₈atoms(Na₉HSiW₉O₃₄•23H₂O⁷,H₆P₂W₁₈O₆₂•24H₂O,^{58–59} α -K₁₀P₂W₁₇O₆₁•15H₂O,^{60–61} and α/β -K₆P₂W₁₈O₆₂•10H₂O^{60–61}) were synthesized by methods previously described.

The oxide supports used for this study were Al₂O₃ (Engelhard, $S_{\text{BET}} \approx 200 \text{ m}^2/\text{g}$), ZrO₂ (Degussa, $S_{\text{BET}} = 60 \text{ m}^2/\text{g}$), and SiO₂ (Cabosil EH-5, $S_{\text{BET}} \approx 330 \text{ m}^2/\text{g}$). The supported tungsten oxide catalysts were prepared by incipient-wetness impregnation of aqueous solutions of ammonium metatungstate, (NH₄)₁₀W₁₂O₄₁. 5H₂O (Pfaltz & Bauer, 99.5% purity), into the various supports to achieve 1/8 and 1 monolayer surface coverage. The samples were dried overnight under ambient conditions and subsequently dried in flowing air (Airgas, Zero Grade) at 120 °C for 1 h and calcined in flowing air (Airgas, Zero Grade) at 450 °C for 4 h. The following notation is employed to express the supported tungsten oxide samples: xWSupport, where x is the surface density (W-atoms/nm²) and Support is the support (i.e., 4.5WZr represents a surface density of 4.5 W/nm² for the supported WO₃/ZrO₂ catalyst). Surface tungsten oxide coverage and loading for the supported WO₃ catalysts are found in Table 2.

Raman Spectroscopy. Raman spectroscopy was used to obtain the molecular structures of the bulk and supported tungsten oxide catalysts with either a visible (532 nm; bulk tungstates, ZrO₂- and SiO₂-supported WO₃) or an ultraviolet (325 nm; Al₂O₃-supported WO₃) laser excitation on a single-stage Horiba-Jobin Yvon Lab Ram-HR Raman spectrometer equipped with a confocal microscope (Olympus BX-30) and a notch filter (Kaiser Super Notch). The visible excitation was generated by a Nd–YAG doubled diode pumped laser (Coherent Compass 315M-150; output power of 150 mW with sample power 10 mW), and the UV laser excitation was generated from a He–Cd laser (Kimmon model IK5751I-G; output power of 30 mW with sample power \approx 7 mW). The scattered photons were directed into a single monochromator and focused onto a

 TABLE 2: Surface Tungsten Oxide Coverage and Loading for the Supported WO₃ Catalysts

catalyst	surface area of support (m ² /g)	surface density (W atoms/nm ²)	% of monolayer coverage
WO ₃ /ZrO ₂	60	0.5	0.13
		4.5	1
WO ₃ /Al ₂ O ₃	~ 200	0.5	0.13
		4.5	1
WO ₃ /SiO ₂	~330	$\sim 0.1 (1\%)$	а
		~0.5 (6%)	а

^{*a*} Monolayer surface coverage for the supported WO₃/SiO₂ catalyst system is not achievable. Maximum dispersion before crystalline WO₃ formation is $\sim 6\%$ WO₃/SiO₂.

UV-sensitive liquid-N2-cooled CCD detector (Horiba-Jobin Yvon CCD-3000V) with a spectral resolution of $\sim 2 \text{ cm}^{-1}$ for the given parameters. The Raman spectrometer was also equipped with an environmentally controlled high-temperature cell reactor (Linkam, TS1500) that examined the catalyst samples in loose powder form ($\sim 5-10$ mg) and also allowed for control of both the temperature and gaseous composition. The Raman spectra of the ambient supported tungsten oxide catalysts were collected before the samples were dehydrated. In situ Raman spectra were collected for the supported tungsten oxide catalysts after dehydration at 450 °C for 1 h in flowing 10% O₂/He (Airgas, certified, 9.735% O₂/He, ultrahigh purity and hydrocarbon free, 30 mL/min) to desorb the adsorbed moisture, and the spectra of the dehydrated samples were collected after cooling the catalysts back to room temperature in the flowing 10% O₂/He gas. The Raman spectra of the bulk tungsten oxide compounds were taken under ambient conditions. The spectral acquisition time employed was 20 scans of 20 s/scan for a total of \sim 7 min/spectrum.

UV-vis Diffuse Reflectance Spectroscopy (DRS). The electronic structures of the bulk tungsten oxide reference compounds and the supported tungsten oxide catalysts were obtained with a Varian Cary 5E UV-vis spectrophotometer employing the integration sphere diffuse reflectance attachment (Harrick Praying Mantis Attachment, DRA-2). The finely ground powder samples (~20 mg) of the bulk tungstate reference compounds and the supported tungsten oxide catalysts were loaded into an in situ cell (Harrick, HVC-DR2) and measured in the 200-800 nm region with a magnesium oxide reflectance standard used as the baseline. The UV-vis spectra of the bulk tungstate reference compounds were obtained under ambient conditions, and the spectra of the supported tungsten oxide catalysts were obtained after the samples were treated at 400 °C for 1 h in flowing 10% O2/He (Airgas, certified, 9.735% O₂/He, ultrahigh purity and hydrocarbon free, 30 mL/min) to desorb the adsorbed moisture. Below 300 nm, the absorbance signal was unacceptably noisy and a filter (Varian, 1.5ABS) was employed to minimize the background noise. For the UVvis DRS studies of the supported tungsten oxide catalysts in the present work, absorption from the Al₂O₃ and SiO₂ supports can be neglected as compared to the strong absorption of the W(VI) cations. The ZrO₂ support, however, exhibits strong absorption in the UV-vis region and, thus, cannot be neglected. Therefore, the Al₂O₃, ZrO₂, and SiO₂ supports were used as the baseline for the supported tungsten oxide catalysts to keep all the systems consistent.

The UV-vis spectra were processed with Microsoft Excel software, consisting of calculation of the Kubelka-Monk function, $F(R_{\infty})$, which was extracted from the UV-vis DRS absorbance. The edge energy (E_g) for allowed transitions was determined by finding the intercept of the straight line in the

Figure 1. Raman spectra (532 nm) of bulk tungstate reference compounds.

Figure 2. Raman spectra (532 nm) of heteropolyoxo tungstates and bulk WO_3 .

low-energy rise of a plot of $[F(R_{\infty})hv]^{1/n}$, where n = 0.5 for the direct allowed transition, vs hv, where hv is the incident photon energy.^{50,62,63}

3. Results

3.1. Bulk Tungsten Oxide Compounds. The Raman spectra of bulk tungsten oxide reference compounds, under ambient conditions, are presented in Figures 1 and 2. The absence of characteristic WO₃ vibrations at 805, 715, and 270 cm⁻¹ demonstrates the phase purity of these tungstate reference compounds. The corresponding UV–vis DRS band maxima and edge energy values are provided in Table 3. The UV–vis DRS spectra of selected bulk tungstates are shown in Figure 3, which illustrates the various locations of the ligand-to-metal charge transfer (LMCT) transition of different tungsten oxide structures (Figure 3A) and the determination of edge energy from the UV–vis spectra for selected compounds (Figure 3B).

Isolated WO₄ Structures. Various bulk crystalline orthotungstate compounds possessing isolated WO₄ sites are known (i.e., CaWO₄, Na₂WO₄, K₂WO₄, Al₂(WO₃)₄, and Zr(WO₄)₂, etc.);^{64,66} unfortunately, an ideal WO₄ structure has not been found. Hardcastle et al.,⁶⁴ using the diatomic approximation method, concluded that for an ideal WO₄ unit the shortest W–O bond should correspond to a Raman fingerprint located at 874 cm⁻¹ (v_s (W=O)), with a standard deviation of approximately 55 cm⁻¹. It is expected for compounds consisting of WO₄ units that the v_s vibration will shift to higher wavenumber values as the W–O bond is shortened by distortions.⁶⁴ The tungstate ion in aqueous solution, $[WO_4]_{aq}^{2-}$, exhibits Raman vibrations at 931 ($\nu_s(W=O)$), 834 ($\nu_{as}(W=O)$), and 326 ($\delta(W=O)$) cm⁻¹.^{64,69,75} The shortest W-O bond in the aqueous tungstate ion exhibits a Raman stretching mode at 931 cm⁻¹ revealing that the [WO₄]_{ad}²⁻ ion is significantly distorted from the ideal tetrahedron because it is hydroxylated.⁶⁴ Bulk CaWO₄, which has a scheelite structure, exhibits Raman bands at 910, 838, 796, 395, 330, and 205 cm⁻¹,³⁰ revealing its slightly distorted isolated WO₄ unit. Bulk Na₂WO₄ consists of a spinel WO₄-coordinated structure and exhibits Raman bands at 931, 812, 370, and 308 cm⁻¹.³⁰ The Raman spectrum of the isolated WO₄ sites in bulk K_2WO_4 possesses bands at 925, 850, 823, 350, and 321 cm⁻¹. The bulk CaWO₄, K₂WO₄, and Na₂WO₄ crystalline compounds exhibit a single strong Raman band in the 910–931 cm⁻¹ region from the $\nu_s(W=O)$ vibration, reflecting the presence of only one slightly irregular WO₄ unit in these reference compounds. The absence of Raman bands in the $500-700 \text{ cm}^{-1}$ region reflects the absence of bridging W-O-W bonds in the above structures.

Bulk Al₂(WO₄)₃ and Zr(WO₄)₂ are more complex tungstates since they contain multiple WO₄ sites that are highly distorted. Crystalline Al₂(WO₄)₃ possesses a garnet structure consisting of both regular and distorted WO₄ groups that give rise to major Raman bands at 1052, 993, 901, 807, 712, 389, 370, and 324 cm⁻¹.³⁰ The bulk Zr(WO₄)₂ cubic structure exhibits the main Raman features at 1028, 968, 931, 904, 860, 790, 734, 378, 330, 305, 231, and 138 cm⁻¹. The appearance of multiple Raman bands in the 900–1060 cm⁻¹ range for bulk Al₂(WO₄)₃ and Zr(WO₄)₂ indicates that these structures contain more than one isolated WO₄ unit. The presence of isolated WO₄ structures in these orthotungstate reference compounds is confirmed by the absence of Raman features in the 500–700 cm⁻¹ range characteristic of bridging W–O–W bonds.

A unique feature of UV-vis DRS for the isolated WO₄ reference compounds is that they only possess a single ligandto-metal charge transfer (LMCT) band in the general region of $\sim 218-274$ nm, with many of the band maxima occurring at $\sim 220-250$ nm. The exact location of this band maximum depends on the extent of distortion of the isolated WO₄ structure. For example, K₂WO₄ has a relatively undistorted isolated WO₄ unit and possesses a LMCT band at ~ 223 nm, whereas Zr-(WO₄)₂ consists of a distorted isolated WO₄ unit and exhibits a LMCT band at ~ 274 nm. The corresponding UV-vis DRS E_g values for the more regular WO₄ structures are 5.2–5.6 eV and 4.0–4.2 eV for the highly distorted WO₄ structures.

Isolated WO₆ Structures. A perfect undistorted isolated WO₆ structure has not been found. Hardcastle et al.,⁶⁴ using the diatomic approximation method, concluded that for an ideal WO₆ unit the shortest W–O bond should correspond to a Raman band located at 691 cm⁻¹ (v_s (W=O)) with a standard deviation of approximately 55 cm⁻¹. It is expected for compounds consisting of WO₆ units that the v_s vibration will shift to higher wavenumber values as the W-O bond is shortened by distortions.⁶⁴ The aqueous ion containing an isolated WO₆ structure is predicted to give rise to Raman bands at 740 (v_s (W=O)), 430 ($\nu_{as}(W=O)$), and 360 ($\delta(W=O)$) cm⁻¹.^{64,69} Unlike an ideal WO₄ structure where all four normal vibrational modes of the tetrahedral structure are Raman active, an ideal WO₆ structure has six normal modes of vibration of which only three are Raman active.⁶⁵ The isolated WO₆ wolframite structure is found in the bulk crystalline NiWO₄ and ZnWO₄⁶⁶⁻⁶⁷ reference compounds. Bulk NiWO₄ possesses Raman features at 893, 696, 548, 510, 416, 362, 305, 222, and 146 cm^{-1} , where the band at

Figure 3. (A) UV-vis DRS spectra of selected bulk tungstate reference compounds: (a) WO₃, (b) (NH₄)₆H₂W₁₂O₄₀, (c) Al₂(WO₄)₃, (d) Na₂W₂O₇, (e) Zr(WO₄)₂, (f) MgW₂O₇, and (g) Na₂WO₄. (B) UV-vis DRS spectra and E_g values of selected bulk tungstate reference compounds: (a) (NH₄)₆H₂W₁₂O₄₀, (b) Al₂(WO₄)₃, and (c) Na₂WO₄. (C) UV-vis DRS spectra and LMCT transition bands of a 50/50 physical mixture of Al₂(WO₄)₃ and Na₂WO₄. (D) UV-vis DRS spectra and E_g values of Al₂(WO₄)₃ and Na₂WO₄.

TABLE 3: Local WO_x Structure and Corresponding UV-vis DRS Edge Energy (E_g) Values of Bulk Tungsten Oxide Reference Compounds

catalyst system	band max (nm)	$E_{\rm g}({\rm eV})$	mol struct
$CaWO_4$	218(sh), 256	5.6	isolated WO ₄
Na_2WO_4	218, 258 (w)	5.3	isolated WO ₄
K_2WO_4	223	5.2	isolated WO ₄
$MgWO_4$	218(sh), 320	5.2	isolated WO ₄
$Al_2(WO_4)_3$	250	4.2	distorted, isolated WO ₄
$Zr(WO_4)_2$	274	4.0	distorted, isolated WO ₄
NiWO ₄	247(sh), 342	4.5	distorted, isolated WO ₆
$ZnWO_4$	270(w), 344	4.5	distorted, isolated WO ₆
MgW_2O_7	252, 296 (w)	4.3	dimeric O ₃ W–O–WO ₃
$Na_2W_2O_7$	250, 270(w)	4.1	infinite chain, alternating WO ₄ /WO ₆
$K_2W_2O_7$	252, 306(w)	3.6	infinite chain, alternating WO ₄ /WO ₆
Na ₉ HSiW ₉ O ₃₄	250, 294(sh)	3.7	WO ₆ -containing cluster
$(NH_4)_{10}H_2W_{12}O_{42}$	269,314	3.6	WO ₆ -containing cluster
$(NH_4)_6H_2W_{12}O_{40}$	254, 318	3.5	WO ₆ -containing cluster
$\alpha_2 - K_{10} P_2 W_{17} O_{61} \cdot 15 H_2 O$	290	3.4	WO ₆ -containing cluster
$H_4SiW_{12}O_{40}$	254, 323	3.4	WO ₆ -containing cluster
$H_3PW_{12}O_{40}$ •24 H_2O	254, 306	3.4	WO ₆ -containing cluster
$Na_3PW_{12}O_{40}$	255, 328	3.4	WO ₆ -containing cluster
$\alpha - K_6 P_2 W_{18} O_{62} \cdot 10 H_2 O_{62}$	257(sh), 302, 345, 372(sh)	3.1	WO ₆ -containing cluster
$H_6P_2W_{18}O_{62}$ •24 H_2O	255(sh), 300(w), 356, 384	3.0	WO ₆ -containing cluster
WO ₃	251, 330	2.8	infinite 3D WO ₆ structure

893 cm⁻¹ is associated with the WO₆ symmetric stretching vibration. Bulk ZnWO₄ exhibits Raman bands at 906, 782, 707, 676, 541, 510, 404, 336, 311, 270, 189, and 160 cm⁻¹, with the 906 cm⁻¹ band representing the symmetric stretch. Both crystalline WO₆ structures are distorted, which is reflected in the Raman shift from 691 to 893–906 cm⁻¹ for the symmetric

stretch. The corresponding UV-vis DRS E_g values are ~4.5 eV with the LMCT band maxima between 247-252 and 342-344 nm, which reflect the distorted nature of the isolated WO₆ units present in these bulk tungstate reference compounds.

Dimeric W_2O_7 *Structure*. Bulk tungsten oxide compounds rarely form polymeric WO₄ compounds with the exception of

with the exception of the highly distorted isolated WO₄ structures. Polymeric W₂O₇ Linear Chain. Bulk disodium tungstate, $Na_2W_2O_7$, and dipotassium tungstate, $K_2W_2O_7$, are composed of alternating WO₄ and WO₆ units joined to give an infinite polymeric chain.³⁰ The Raman band at 934-933 cm⁻¹ is assigned to the symmetric W=O stretching mode of the WO₄ site, and the band at 888-876 cm⁻¹ is assigned to the symmetric W=O stretching mode of the WO₆ site. The stretching and bending modes of the bridging W-O-W infinite chain appear at \sim 500-800 and \sim 200-300 cm⁻¹, respectively.³⁰ The UVvis spectrum of Na₂W₂O₇ gives rise to two LMCT bands with maxima at 250 and 270 nm, and the UV-vis spectrum of K₂W₂O₇ also gives rise to two LMCT bands with maxima at 252 and 306 nm. The corresponding UV-vis DRS $E_{\rm g}$ values for Na₂W₂O₇ and K₂W₂O₇ of 4.1 and 3.6 eV, respectively, are lower than that found in the dimeric O₃W-O-WO₃ structure as well as the isolated WO₄ or WO₆ reference compounds. The E_{g} value for Na₂W₂O₇, however, exhibits a comparable E_{g} value also found for highly distorted and isolated WO₄ structures (i.e., Al₂(WO₄)₃ and Zr(WO₄)₂), whereas the E_g value for K₂W₂O₇

lies much lower.

than that found in the isolated WO₄ or WO₆ bulk compounds

 $W_{12}O_x - W_{18}O_x$ Clusters. Tungsten oxide clusters composed of polymeric WO₆ units are found in ammonium tungstates as well as Wells-Dawson and Keggin heteropolytungstate compounds. Ammonium metatungstate, $[W_{12}O_{42}]^{12-}$, possesses significantly distorted WO₆ units and exhibits Raman features at ~976 (ν_s (W=O)), 958, 930, 834 (ν_{as} (W=O)), and W-O-W modes at 700-500 and 330-190 cm⁻¹. The Keggin heteropolyoxo anions consist of polymeric W12O40 clusters with the general formula of $[XW_{12}O_{40}]^{3-}$. The Keggin anion's general structure is composed of a globe-like cluster of corner and edgesharing WO_6 units that enclose a central XO_4 unit (where X represents P, Si, etc.). The tungsten WO₆ units possess one short W=O bond, four W-O-W bonds, and one long W-O-X bond to the central XO₄ unit. The Raman spectra of the Keggin anions exhibit bands between 950 and 1015 cm⁻¹ (ν_s (W=O)) and 825–930 cm⁻¹ ($\nu_{as}(W=O)$) as well as bands at lower wavenumbers arising from the bridging W-O-W bonds. The larger Wells-Dawson heteropoly anions, (i.e., α -[X₂W₁₈O₆₂]⁶⁻) and Wells-Dawson lacunary species (i.e., α_2 -[X₂W₁₇O₆₁]¹⁰⁻) exhibit multiple W=O vibrations between 950 and 1005 cm^{-1} , reflecting a distribution of distortions among the WO₆ units in the framework.

The corresponding UV–vis DRS E_g values for these reference isopolytungstates occur between 3.0 and 3.6 eV, which is much lower than any of the previous tungsten oxide reference compounds. These isopolytungstate compounds contain multiple LMCT transitions which differ slightly depending on the parent ion. For the Keggin compounds with the general formula $[XW_{12}O_{40}]^{3-}$, two LMCT transitions occur between 250–269 and 294–328 nm. The larger Wells-Dawson heteropoly anions, (i.e., α -[X₂W₁₈O₆₂]⁶⁻) possess a single LMCT transition at 290 nm, where the Wells-Dawson lacunary species (i.e., α_2 - $[X_2W_{17}O_{61}]^{10-}$) exhibit four LMCT transitions between 247 and 257, ~300, 345–356, and 372–384 nm. Furthermore, the position of the UV–vis DRS band maxima and the E_g values of the Keggins are independent of the central cation (Si or P) as well as the charge-balancing secondary cation (H⁺ or Na⁺).

Infinite 3D Structure. Crystalline WO₃ is a three-dimensional structure composed of distorted WO₆ units that exhibits major Raman bands at 805, 715, and 270 cm⁻¹. The 805 and 715 cm⁻¹ vibrations arise from the bridging W–O–W stretching frequencies, and the 270 cm⁻¹ vibration is the related bridging W–O–W bending mode.^{30,69} Bulk WO₃ contains two LMCT transitions at 251 and 338 nm with the corresponding UV–vis DRS E_g value of 2.8 eV which is even lower than that found for the finite clusters present in the Keggin and Wells-Dawson reference compounds. Crystalline WO₃ nanoparticles (NPs) give rise to strong Raman bands,²⁷ and the absence of these bands in the tungsten oxide reference compounds reflects their phase purity.

Summary of UV-vis and Raman Spectroscopy of Bulk Tungstates. The extensive set of UV-vis and Raman spectra in Figures 1 and 2 and Table 3 reveal several trends between tungstate structures and their spectra. Raman spectroscopy is sensitive to (i) the number of distinct WO_x sites in a structure (reflected in the number of symmetric bands in the high wavenumber region), (ii) the extent of distortion of the local WO_x structure (shift in symmetric stretch relative to ideal structures), and (iii) the presence of the polytungstate functionality (W-O-W). Furthermore, the Raman bands tend to be sharp, and the molecular nature of Raman spectroscopy sometimes allows identification of specific structures when appropriate reference compounds are available. A minor downside of Raman spectroscopy is that it is more sensitive to species possessing higher W-O bond order (i.e., W=O vs W-O).

The UV-vis spectra allow for discrimination between mildly distorted isolated WO₄/WO₆ ($E_g > 4.4$ eV) and polymeric structures ($E_{\rm g}$ < 4.0 eV). The number and location of LMCT transition band maxima further discriminates between these structures since isolated WO₄ units generally result in only one strong transition occurring at ~220 nm, whereas slightly distorted monotungstate structures and polytungstates, especially clusters, tend to give rise to multiple strong LMCT bands between 250 and 350 nm. In the region 4.0 eV $\leq E_g \leq$ 4.4 eV, however, several types of tungstate compounds possess $E_{\rm g}$ values that complicate UV-vis structural assignments. For example, highly distorted WO₄ sites give rise to E_g values of 4.0–4.2 eV with an LMCT of \sim 250–270 nm, the dimeric W₂O₇ unit exhibits an E_g value of 4.3 eV with LMCT of ~250 nm, and polytungstate W_2O_7 chains can also yield an E_g value of 4.1 eV with an LMCT of \sim 250 nm.

A further complication of UV-vis spectral analysis can result when multiple structures are present in the same sample because of the broadness of the bands. For example, if a mixture contains comparable quantities of both mildly distorted WO₄ species (Na₂WO₄ with $E_g \approx 5.3$ eV and LMCT ≈ 218 nm) and highly distorted WO₄ species (Al₂(WO₄)₃ with $E_g \approx 4.2$ eV and LMCT ≈ 250 nm), the resulting UV-vis spectrum is dominated by the lower E_g value of the highly distorted WO₄ species and exhibits two LMCT band maxima at 218 and 255 nm (see Figure 3C). Note that the apparent E_g value of the Na₂WO₄/Al₂(WO₄)₃ physical mixture is dominated by the lower E_g value of the highly distorted WO₄ site present in Al₂(WO₄)₃, but the LMCT transition gives rise to the two bands from the individual Na₂-WO₄ and Al₂(WO₄)₃ structures. A similar result would occur if

Figure 4. Raman spectra (325 nm) of supported WO₃/Al₂O₃ catalysts under ambient and dehydrated conditions as a function of surface tungsten oxide coverage (W/nm²).

Figure 5. Raman spectra (325 nm) of supported WO_3/ZrO_2 catalysts under ambient and dehydrated conditions as a function of surface tungsten oxide coverage (W/nm²).

a sample has comparable amounts of monotungstate and polytungstate components. For multicomponent tungstate systems, thus, the overall E_g value is dominated by the component with lowest E_g values and the LMCT transition of each component is retained. The broad nature of the UV-vis LMCT bands, however, sometimes complicates detection of each individual LMCT transition in mixed tungstate structures. It is, thus, critical that both Raman and UV-vis spectra be collected on the same sample and under the same experimental conditions to obtain a more complete perspective of the components in tungstate mixtures.

3.2. Supported Tungsten Oxide Catalysts. The surface tungsten oxide coverage and loading for the examined supported WO₃ catalysts are summarized in Table 2. Monolayer surface coverage for Al₂O₃ and ZrO₂ is ~4.5 W atoms/nm².^{40,70,71} The maximum dispersion achieved for the supported WO₃/SiO₂ catalyst is ~0.5 W atoms/nm² since higher tungsten oxide loadings resulted in the presence of crystalline WO₃ NPs. The Raman spectra under ambient and dehydrated conditions of the supported WO₃ catalysts are shown in Figures 4–6, and the corresponding UV–vis DRS edge energies and LMCT transitions are listed in Tables 4 and 5.

Supported WO_3/Al_2O Catalysts. The Raman spectra of the supported WO_3/Al_2O_3 catalysts under ambient and dehydrated conditions are presented in Figure 4. The Al_2O_3 support does not give rise to any Raman vibrations, which allows detection

Figure 6. Raman spectra (532 nm) of supported WO_3/SiO_2 catalysts under ambient and dehydrated conditions as a function of surface tungsten oxide coverage (W/nm²).

of all of the W-O vibrations. Raman bands from crystalline WO₃ NPs (805, 715, 270 cm⁻¹) are not present and confirm the successful complete dispersion of the tungsten oxide phase over the Al₂O₃ support at high and low surface coverage. Under ambient conditions, Raman bands are present at \sim 990 cm⁻¹ $v_{\rm s}$ (W=O) and ~867 cm⁻¹ $v_{\rm as}$ (W=O) for the hydrated monolayer supported 4.5WAl sample that are characteristic of the hydrated $[W_{12}O_{39}]^{6-}$ cluster that possesses Raman bands at ~990–960 cm⁻¹ (ν_s (W=O)) and 330–190 cm⁻¹ (W–O–W mode).^{31,74} Sample fluorescence prevented collection of the Raman spectra for the low-coverage supported 0.5WAl catalyst under ambient conditions, but a previous Raman analysis of supported ~0.5WAl catalyst under ambient conditions exhibited bands at 951, 880, and 330 cm^{-1.31} These vibrations are characteristic of distorted aqueous [WO₄]²⁻ monotungstate.³¹ Upon dehydration, the major Raman bands from the dehydrated surface WO_x species appear at ~ 1001 and 1015 cm⁻¹ for the supported 0.5 and 4.5WAl catalysts, respectively. The monolayer supported 4.5WAl catalyst contains additional Raman bands at \sim 867, \sim 780, and \sim 323 cm⁻¹ assigned to the symmetric stretch of the bridging W-O-Al bond, asymmetric stretch of the bridging W-O-W bond, and associated O-W-O bending mode of the dehydrated surface WO_x species, respectively.^{29,30,72} The short W=O bonds at ~ 1001 and ~ 1015 cm⁻¹ are

local WO structural assignments under ambient conditions

TABLE 4: Comparison of UV–vis DRS Local WO_x Molecular Structural Assignments for Supported WO₃ Catalysts with Raman and XANES under Ambient Conditions

				∇x structural assignments under ambient conditions		
catalust system	hand may (nm)	$F_{(aV)}$	average no. W-O-W	UV-vis DPS	Paman	YANES
catalyst system	Ualid Illax (IIIII)	Lg (ev)	Donus	UV VIS DRS	Kalilali	AANES
$0.5 \ W/nm^2 WO_3/Al_2O_3$	227	5.3	~ 0	monotungstate (WO ₄)	monotungstate ([WO ₄] ²⁻) ³¹	distorted WO430,77
$4.5 \text{ W/nm}^2 \text{WO}_3/\text{Al}_2\text{O}_3$	228, 254	4.1	2.2	combination of mono- and polytungstates	polytungstate [W ₁₂ O ₃₉] ⁶⁻ cluster	distorted WO ₅ /WO ₆ ^{30,77}
0.5 W/nm ² WO ₃ /ZrO ₂	226, 249	4.6	1.1	monotungstate	monotungsate [WO ₄] ²⁻	distorted WO430,76,77
$4.5 \text{ W/nm}^2 \text{WO}_3/\text{ZrO}_2$	221, 249, 266 (sh)	4.3	1.6	combination of mono- and polytungstates	polytungstate [HW ₆ O ₂₁] ⁵⁻ cluster	distorted WO ₅ /WO ₆ ^{30,76,77}
$\sim 0.1 \text{ W/nm}^2 \text{WO}_3/\text{SiO}_2$	224, 260	4.2	2.0	combination of mono- and polytungstates	polytungstate [W ₁₂ O ₃₉] ⁶⁻ cluster	Si-containing Keggin- type cluster
${\sim}0.5 \text{ W/nm}^2\text{WO}_3/\text{SiO}_2$	222, 260	4.2	2.1	combination mono- and polytungstates	polytungstate $[W_{12}O_{39}]^{6-}$ cluster and trace of WO ₃ NPs	Si-containing Keggin- type cluster

TABLE 5: Comparison of UV–vis DRS Local WO_x Molecular Structural Assignments for Supported WO_3 Catalysts with Raman and XANES under Dehydrated Conditions

				local WO _x structural assignments under dehydrated conditions		
catalyst system	band max (nm)	$E_{\rm g}({\rm eV})$	average no. W-O-W bonds	UV-vis DRS	Raman	XANES
0.5 W/nm ² WO ₃ /Al ₂ O ₃	228	5.1	~ 0	monotungstate	monotungstate (monoxo WO ₅)	distorted WO430,77
4.5 W/nm ² WO ₃ /Al ₂ O ₃	234, 254	4.0	2.5	combination of mono- and polytungstates	polytungstate (monoxo WO ₅ / WO ₆)	distorted WO ₅ / WO ₆ ^{30,77}
0.5 W/nm ² WO ₃ /ZrO ₂	219, 240, 251(sh)	5.0	0.1	monotungstate	monotungstate (monoxo WO ₅)	distorted WO430,76,77
$4.5 \text{ W/nm}^2 \text{WO}_3/\text{ZrO}_2$	218, 246, 268 (sh)	4.2	1.9	combination of mono- and polytungstates	polytungstate (monoxo WO ₅ / WO ₆)	distorted WO ₅ / WO ₆ ^{30,76,77}
${\sim}0.1~W/nm^2WO_3/SiO_2$	228, 261	4.2	2.0	monotungstate or combination of mono- and polytungstate	monotungstate (dioxo WO ₄)	N/A
${\sim}0.5 \text{ W/nm}^2\text{WO}_3\text{/SiO}_2$	235, 270	4.0	2.4	monotungstate or combination of mono- and polytungstate	monotungstate (dioxo WO ₄) and polytungstate (monoxo WO ₅ /WO ₆)	N/A

characteristic of monoxo-containing surface WO_5 monotungstates and surface WO_5/WO_6 polytungstates, respectively.⁸⁹ and polytungstate WO_5/WO_6 species possessing the monoxo W=O functionality.

The corresponding UV-vis DRS Eg values under ambient and dehydrated conditions for the 0.5WAl sample are \sim 5.3 and \sim 5.1 eV, respectively, which are similar in value for reference compounds containing isolated WO₄ units (i.e., Na₂WO₄, Table 3).⁴⁶ The presence of only a single LMCT band maximum at 227-228 nm confirms the isolated nature of the supported WO₄ units. The UV-vis DRS Eg values under ambient and dehydrated conditions for the 4.5WAl samples are \sim 4.1 and \sim 4.0, respectively, and similar to the values found for tungstate reference compounds consisting of either polytungstate WO_x chains (i.e., Na₂W₂O₇, alternating WO₄ and WO₆ units, Table 3),⁴⁶ highly distorted isolated WO₄ species (i.e., Al₂(WO₄)₃ and $Zr(WO_4)_2$), or a mixture of monotungstates and polytungstates. Multiple LMCT transitions are observed for the 4.5WAl sample at \sim 228–234 and \sim 254 nm under hydrated and dehydrated conditions. The low value of the LMCT transitions at \sim 228-234 nm reflects the presence of a slightly distorted isolated surface WO₄ species, and the additional band at \sim 254 nm is representative of either a highly distorted monotungstate WO₄ species or a polytungstate species, with the latter more likely.

The combined Raman and UV–vis spectroscopic information suggests the following supported tungstate structures on Al₂O₃ under ambient and dehydrated conditions. The surface WO_x species on Al₂O₃ at low coverage is a slightly distorted monotungstate species under both hydrated ([WO₄)]^{2–}) and dehydrated (O₄W=O) conditions. Note that the UV–vis spectral features for such a reference structure are not contained in Table 3 because such a reference compound was not obtained. The hydrated surface WO_x species on AlO₃ at monolayer coverage are present as monotungstate [WO₄]^{2–} and polytungstate [W₁₂O₃₉]^{6–} clusters. The dehydrated surface WO_x species on Al₂O₃ at monolayer coverage are present as both monotungstate

Supported WO_3/ZrO_2 Catalysts. The Raman spectra of the supported WO₃/ZrO₂ catalysts under ambient and dehydrated conditions are shown in Figure 5. The ZrO₂ (monoclinic) support possesses strong Raman bands at ~ 640 , ~ 615 , ~ 558 , ~ 535 , \sim 475, \sim 380, \sim 330, \sim 267, and \sim 215 cm⁻¹ that interfere with the detection of the Raman bands for tungstate vibrations that occur below $\sim 700 \text{ cm}^{-1}$. Fortunately, no ZrO₂ Raman bands are present in the critical 700-1100 cm⁻¹ region where the W= O vibrations for the supported tungsten oxide species occur. A small Raman band from trace amounts of crystalline WO3 NPS at 816 cm⁻¹ is only present in the spectra for the dehydrated 4.5WZr catalyst sample, which reflects the good dispersion of the tungsten oxide phase on the ZrO₂ support. Under ambient conditions where the surface is hydrated, the Raman spectra of the supported 0.5 and 4.5 WZr catalysts exhibit bands at \sim 945 and $\sim 955 \text{ cm}^{-1}$ due to the symmetric stretching mode of the hydrated surface WO_x species.^{27,40} The hydrated Raman band at $\sim 945 \text{ cm}^{-1}$ at low surface coverage is characteristic of aqueous distorted $[WO_4]^{2-}$, and the band at ~955 cm⁻¹ is most probably a combination of distorted aqueous $[WO_4]^{2-}$ and aqueous [HW₆O₂₁]⁵⁻ paratungstate.³¹ Upon dehydration the major Raman bands associated with the surface tungsten oxide species become sharp and shift from ~ 1000 to ~ 1010 cm⁻¹ with surface WO_x coverage. The appearance of the short W= O bonds at ~ 1000 and 1010 cm⁻¹ are characteristic of dehydrated surface WO5 monotungstate and surface WO5/WO6 polytungstate species, respectively.^{40,88,89} An additional Raman band is present at $\sim 915 \text{ cm}^{-1}$ for the dehydrated monolayer 4.5 WZr catalyst samples from the bridging W-O-Zr bond.⁸⁹

The corresponding UV-vis DRS E_g values under ambient and dehydrated conditions for the 0.5WZr catalyst sample are

 \sim 4.6 and \sim 5.0 eV, respectively, which are similar in value for reference compounds that possess both distorted isolated WO₆ and isolated WO₄ structures (i.e., NiWO₄ and Na₂WO₄, respectively, see Table 3).46 The dehydrated 0.5WZr catalyst sample E_g value corresponds to isolated WO₄ species (see Table 3) or possibly isolated WO₅ species. The corresponding UVvis DRS E_g values under ambient and dehydrated conditions for the 4.5WZr sample are \sim 4.3 and \sim 4.2 eV, respectively, which is similar to the value found for reference compounds consisting of polymeric WO_x chains (i.e., $Na_2W_2O_7$ with alternating WO₄ and WO₆ units in Table 3),⁴⁶ dimeric W₂O₇ (i.e., MgW₂O₇ in Table 3), highly distorted isolated species (i.e., Zr(WO₄)₂ in Table 3), or even a mixture of slightly distorted WO₄ and polytungstate. The appearance of multiple LMCT transitions at \sim 221–226 and 249 nm under ambient conditions and LMCT transitions at \sim 219, 240–246, and 251–264(sh) suggests that both monotungstate and polytungstate species are present for 4.5WZr under all conditions.

The combined Raman and UV–vis spectroscopic information suggests the following supported tungstate structures on ZrO_2 under ambient and dehydrated conditions. Under ambient conditions, only hydrated isolated $[WO_4]^{2-}$ species are present at low coverage and hydrated $[WO_4]^{2-}/[HW_6O_{21}]^{5-}$ species are present at monolayer coverage. Under dehydrated conditions, isolated surface $O_4W=O$ monotungstate is found at low coverage and surface WO_5/WO_6 polytungstate species are present at monolayer coverage.

Supported WO₃/SiO₂ Catalysts. The Raman spectra of the supported WO₃/SiO₂ catalysts under ambient and dehydrated conditions are presented in Figure 6. The SiO₂ support possesses weak Raman bands at \sim 802, \sim 605, \sim 490, and \sim 400 cm⁻¹ originating from vibrations of 2-, 3-, and 4-membered silica rings and a band at $\sim 975 \text{ cm}^{-1}$ which is associated with the Si-OH vibration.^{68,73} A trace amount of WO₃ NPs is present for the hydrated 0.5WSi catalyst sample as revealed by the weak Raman bands at \sim 807 and \sim 713 cm⁻¹, which reflects the high dispersion of the tungsten oxide phase on the SiO₂ support under hydrated and dehydrated conditions. Under ambient conditions, Raman bands appear at \sim 966 cm⁻¹ with accompanying bands at lower wavenumbers for the 0.1 and 0.5 WSi catalysts originating from the hydrated $[W_{12}O_{39}]^{6-}$ clusters that have been previously identified on hydrated SiO₂ supports.^{29,74} These bands are probably slightly shifted to higher wavenumber values because of the contribution of the of the Si-OH vibration at \sim 975 cm⁻¹. Upon dehydration, the surface WO_x species give rise to strong Raman bands at 981-985 and 1015 cm⁻¹, with the latter only present for the supported 0.5WSi catalyst. The Raman bands between 980 and 990 cm⁻¹ are consistent with a dehydrated isolated surface WO₄ structure with dioxo O=W= O coordinated species.⁸⁹ The Raman band at 1015 cm⁻¹ is characteristic of monoxo W=O surface WO5 coordinated species⁸⁹ with the weak band at \sim 346 cm⁻¹ assigned to the bending mode of the dehydrated surface WO₄/WO₅ species.

The corresponding UV-vis DRS E_g values for the ambient 0.1 and 0.5WSi are both 4.2 eV, and upon dehydration the E_g values remains about the same (4.0–4.2 eV). Under hydrated conditions, both samples contain two LMCT transition at ~224 and 260 nm, whereas upon dehydration the LMCT transitions slightly shift to 228–235 and 261–270 nm, respectively. Both the LMCT band maxima and the E_g values suggest that the surface tungstate consists of distorted isolated WO₄ dioxo surface species as well as polytungstate monoxo surface WO₅/WO₆ species.

Figure 7. Correlation between the UV–vis DRS edge energy and the average number of bridging W–O–W bonds in bulk tungstates.

The combined Raman and UV-vis spectroscopic information suggests the following supported tungstate structures on SiO₂ under ambient and dehydrated conditions. The ambient WSi catalysts contain both hydrated [W₁₂O₃₉]⁶⁻ polytungstate and some hydrated [WO₄]²⁻ monotungstate species. Raman is more sensitive to the polytungstate clusters, as well as the WO₃ NPs, and UV-vis detects both surface tungstate species. Under dehydrated conditions, the presence of surface WO_4 dioxo W(= O_{2} species is present for at both loadings for the supported WO₃/SiO₂ catalysts, and monoxo polytungstate surface WO₅/ WO₆ species are also present for the higher surface coverage 0.5 WSi catalyst sample. The two LMCT bands in the UV-vis spectra indicate that two distinct surface tungstate species are present on the SiO₂ support under all conditions, which reflect the greater sensitivity of UV-vis for isolated surface tungstate species.

4. Discussion

Correlation of the UV-vis DRS E_g with the Local Structures of W(VI) Oxides. The UV-vis DRS edge energies of V(V) and Mo(VI) cations have previously been successfully correlated with the number of M-O-M bonds or the local symmetry of the central cation.^{50,52} Qualitatively, the UV-vis DRS edge energies of the W(VI) cation have also been found to be sensitive to the local coordination geometry and cations in the second coordination sphere.^{9,10,53} Following the previous successful empirical correlations between $E_{\rm g}$ and the number of nearest cations surrounding the central M cation, a correlation between $E_{\rm g}$ and the average number of covalent bridging W-O-W bonds (N_{W-O-W}) of the central W(VI) cation is also examined for the W(VI)-containing tungsten oxide reference compounds of this paper. The plot of E_g vs N_{W-O-W} is presented in Figure 7, where the $E_{\rm g}$ values linearly vary inversely with N_{W-O-W} with the exception of the isolated WO_x structures whose E_g values vary over a wide range (~4.0-5.6 eV), which is similar to the earlier correlation for $\bar{V}(V)$ compounds. 50 These relationships are quite similar to the number of next nearest metal neighbors (N_M) proposed by Weber⁵² for Mo(VI) compounds, which represents the degree of aggregate/polymerization of the absorbing species. The line shown in Figure 7 can be expressed by the equation

$$N_{\rm W-O-W} = 11.89 - 2.37E_{\sigma}$$
 with $R^2 = 0.9496$ (1)

The high R^2 value is attributed to the distribution of E_g values for the isolated WO₄/WO₅ structures over a wide range (~4.0–

Figure 8. Correlation between the UV-vis DRS edge energy and the number of W atoms (N_W) present in bulk tungstate reference compounds.

5.6 eV) due to the distortion of the isolated WO_x structures. The obtained W(VI) correlation is comparable to that obtained by Weber for Mo(VI) oxide clusters, $N_{\rm Mo} = 16 - 3.8E_{\rm g}$, and Gao et al. for V(V) oxide clusters, $N_{V-O-V} = 14.03 - 3.95E_g$. The similar correlations obtained for the W(VI), Mo(VI), and V(V) cations suggest that the edge energies of metal oxide clusters are associated with the extent of spatial delocalization of the molecular orbitals involved with electronic transitions, as initially proposed by Weber.52 It follows from the correlation in Figure 7 that E_{g} is primarily determined by the number of covalent bridging W-O-W bonds or the degree of polymerization of the central W(VI) cation. The wide range of E_g values obtained for the isolated WO4/WO6 structures appears to reflect the sensitivity of the UV-vis DRS measurement to the extent of distortion of W(VI) cation and needs to be considered when determining local structures.

An inverse relationship between E_g and domain size or number of WO_x units in a tungsten oxide cluster has also recently been invoked in the literature^{10,40,46,76} but never been rigorously examined. The plot of E_{g} versus N_{W} , where N_{W} represents the number of W atoms present in a finite cluster, is presented in Figure 8. The E_g vs N_W plot does not support a direct relationship between E_{g} and N_{W} or domain size for finite WO_x clusters as shown by the plot in Figure 8. First, the E_g values for isolated WO₄/WO₆ structures vary over a very wide range due to the sensitivity to extent of distortion of the W(VI) cation. Second, comparable $E_{\rm g}$ values are obtained for finite W9-W18 clusters and infinite linear chains. Third, both crystalline WO₃ NPs and polymeric W₂O₇ linear chain structures are infinite but exhibit widely varying E_{g} values. The inverse relationship between $E_{\rm g}$ and $N_{\rm W-O-W}$ better captures the variation of the UV-vis DRS E_{g} values with the local structure of the W(VI) cation.

Surface Structures of Supported Tungsten Oxide Catalysts. The E_g vs N_{W-O-W} correlation implies that the edge energies of the supported tungsten oxide species can also be used to estimate the local WO_x surface structures. The average N_{W-O-W} for the supported tungsten oxide catalysts can be calculated based on the empirical equation obtained above, $N_{W-O-W} = 11.89 - 2.37E_g$, and the results are listed in Tables 4 and 5 with the UV-vis DRS possible structural assignments. However, since the E_g values tend to be rather complex when multiple structures are present, it is necessary to also include the LMCT transitional bands when making structural assignments as well as employ complementary structural characterization results obtained via Raman, IR, and X-ray absorption nearedge spectroscopy (XANES).

Supported WO₃/Al₂O₃ Catalysts. For the hydrated supported 0.5WAl catalyst, <15% monolayer coverage, the current UV– vis and Raman are in agreement with each other and XANES structural studies conducted by Horsley et al.,³⁰ Eibl et al.,⁴² and Hilberg et al.⁷⁷ concluding hydrated WO₄ coordinated monotungstate units are present (see Table 4). For the hydrated supported 4.5 WAl monolayer catalyst, the current UV–vis and Raman and previous XANES studies are also in agreement that distorted square pyramidal (WO₅) or pseudo-octahedral (WO₆) structures are the predominant species (see Table 4), with Raman indicating the presence of hydrated [W₁₂O₃₉]^{6–} polytungstate species. UV–vis analysis also suggests the presence of some monotungstate species.

Under dehydrated conditions, all spectroscopic characterization studies are in agreement that isolated surface tungstate species are present for dehydrated 0.5WAl (see Table 5). Raman analysis suggests that the surface monotungstate species possess monoxo W=O functionality (O₄W=O). The presence of dehydrated surface WO₅/WO₆ polytungstate species are concluded for the 4.5WAl catalyst sample from all spectroscopic methods (see Table 5) with the additional observation of isolated monotungstate species from UV–vis DRS.

Supported WO_3/ZrO_2 Catalysts. The assigned tungstate structures on the ZrO₂ support are also in agreement with Raman, UV-vis, and earlier XANES⁴² spectroscopic measurements and almost the same as those found above for the supported WO_3/Al_2O_3 catalysts (see Tables 4 and 5). The hydrated polytungstate $[HW_6O_{21}]^{5-}$, however, is found at monolayer coverage on ZrO₂, while the hydrated $[W_{12}O_{39}]^{6-}$ is found for the comparable Al_2O_3 catalyst because of the different pH at point of zero charge (PZC) values of the hydrated supports.

Supported WO₃/SiO₂ Catalysts. Unlike WO₃ supported on ZrO_2 and Al_2O_3 where the catalyst edge energy and average $N_{\rm W-O-W}$ values are a strong function of the tungsten oxide loading, this does not hold true for supported WO₃/SiO₂. The supported 0.1WSi and 0.5WSi catalysts exhibit intermediate edge energies of 4.2 eV under ambient conditions and 4.0-4.2 eV under dehydrated conditions, reflecting N_{W-O-W} values of \sim 2.0 and \sim 2.0–2.4, respectively. The UV-vis DRS possess multiple LMCT transitions at ~222 and 260 nm under ambient conditions and ~228-235 and 261-270 nm under dehydrated conditions. Comparison with reference compounds suggests that on the SiO₂ surface highly distorted isolated surface WO_x are the predominate species (i.e., Al₂(WO₄)₃ and NiWO₄ contain distorted WO₄ and WO₆ units, see Table 3).⁴⁶ The correlation results, however, also suggest that the surface WO_x species could lie within the polymeric region. It is for this reason that complementary characterization techniques must be used to verify the molecular species present. In the present study under ambient conditions Raman bands appear at \sim 966 cm⁻¹ with accompanying bands at lower wavenumbers for the 0.1 and 0.5 WSi catalysts originating from hydrated $[W_{12}O_{39}]^{6-}$ clusters that have been previously identified on hydrated SiO₂ supports.^{29,31,74} The presence of some hydrated $[WO_4]^{2-}$ is also suggested from UV-vis DRS.

Upon dehydration, the surface WO_x species give rise to strong Raman bands at 981–985 and 1015 cm⁻¹, with the latter only present for the supported 0.5WSi catalyst. The Raman band at 981–985 cm⁻¹ is consistent with a dehydrated isolated surface WO_4 structure with dioxo O=W=O coordinated species.⁸⁹ The Raman band at 1015 cm⁻¹ is consistent with monoxo W=O

surface WO₅/WO₆ coordinated species⁸⁹ with the weak band at \sim 346 cm⁻¹ assigned to the bending mode of the dehydrated surface WO₄/WO₅ species.

Recent EXAFS studies of supported WO₃/SiO₂ under ambient conditions proposed that either hydrated polytungstate chains or dodecatungstosilicate Keggin clusters are present.⁸¹ Other researchers also detected small amounts of dodecatungstosilicdic acid in hydrated supported WO₃/SiO₂ catalysts when prepared via wet impregnation.⁸²⁻⁸⁴ Hydrated H₄SiW₁₂O₄₀ clusters, however, give rise to a sharp Raman band at $\sim 1001 \text{ cm}^{-1}$ (see Figure 2) that is not present for the hydrated supported WO₃/ SiO₂ catalysts. Furthermore, hydrated H₄SiW₁₂O₄₀ clusters would also give rise to two LMCT bands \sim 254 and \sim 323 nm with an E_g value of ~3.4 eV, which are not observed for the present hydrated supported WO₃/SiO₂ catalysts. It is well known for hydrated supported MoO₃/SiO₂ that silicomolybdic acid can form after prolonged exposure to moist environments, 85,86 which suggests that the environmental conditions may not have been the same in all these studies. XANES characterization of coordination for the hydrated or dehydrated surface WO_x species on silica has not appeared in the literature to date.

5. Conclusions

The UV-vis DRS spectroscopic method, with the aid of Raman spectroscopy, was utilized to study the surface structures of molecularly dispersed tungsten(VI) oxide on oxide supports (Al₂O₃, ZrO₂, and SiO₂) under ambient and dehydrated conditions. Under ambient conditions, hydrated surface $[WO_4]^{2-}$, $[HW_6O_{21}]^{5-}$, and $[W_{12}O_{39}]^{6-}$ species were found to be present on the supports, and their relative concentration depends on the surface coverage and pH at PZC of the oxide support. At low surface coverage and dehydrated conditions, isolated surface OW₄=O monoxo species are present on Al₂O₃ and ZrO₂, and isolated surface $O_2W(=O)_2$ dioxo species are present on SiO₂. At high surface coverage under dehydrated conditions, monotungstate surface $OW_4=O$ and polytungstate WO_5/WO_6 species are present on Al₂O₃ and ZrO₂ and monotungstate surface O₂W- $(=O)_2$ and monoxo surface WO₅/WO₆ species on SiO₂. The current study demonstrates that the combination of UV-vis DRS and Raman spectroscopy allows discrimination between surface monotungstate and polytungstate structures as well as WO₃ NPs.

On the basis of various tungsten oxide reference compounds, a correlation of $N_{W-O-W} = 11.89 - 2.37 E_g$ was established between the edge energy, E_{g} , and the average number of covalent W-O-W bonds around the central W(VI) cations. A direct relationship between E_{g} and N_{W} , the number of W atoms in a tungstate cluster, however, is not found because of the strong contribution of local structural distortions in the tungstates.

Acknowledgment. This work was supported by the U.S. Department of Energy-Basic Energy Sciences, Grant DEF-G02-93ER14350. The authors thank Dr. Laura E. Briand for the help in synthesizing the various polyoxotungstate structures.

References and Notes

(1) Thomas, C.L. Catalytic Processes and Proven Catalysts; Academic Press: New York, 1970.

- (2) Satterfield, C. N. Heterogeneous Catalysis in Practice; McGraw-Hill: New York, 1980.
- (3) Thomas, J. M.; Thomas, W.J. Principles and Practice of Heterogeneous Catalysis; VCH Publishers, Inc.: New York, 1997.
 - (4) Boyse, R. A.; Ko, E. I. J. Catal. 1997, 171, 191.
- (5) Santiesteban, J. G.; Vartuli, J. C.; Han, S.; Bastian, R. D.; Chang, C. D. J. Catal. 1997, 168, 431.

- (6) Scheithauer, M.; Grasselli, R. K.; Knozinger, H. Langmuir 1998, 14 3019
- (7) Hino, M.; Arata, K. J. Chem. Soc., Chem. Commun. 1988, 18, 1259. (8) Hino, M.; Arata, K. Chem. Lett. 1989, 6, 971.
- (9) Baertsch, C. D.; Komala, K. T.; Chua, Y.-H.; Iglesia, E. J. Catal. 2002, 205, 44.
- (10) Barton, D. G.; Soled, S. L.; Meitzner, G. D.; Fuentes, G. A.; Iglesia, E. J. Catal. 1999, 181, 57.
- (11) Wivel, C.; Clausen, B. S.; Candia, R.; Morup, S.; Topsoe, H. J. Catal. 1984, 87, 497.
- (12) Grenoble, D. C.; Kim, C. J.; Murrell, L. L. U.S. Patent No. 4,-440,872, 1984.
- (13) Murrell, L. L.; Grenoble, D. C.; Kim, C. J.; Dispenziere, N. C. J. Catal. 1987, 107, 463.
- (14) Murrell, L. L.; Kim, C. J.; Grenoble, D. C. U.S. Patent No. 4,-233,139, 1980.
- (15) Bernholc, J.; Horsley, J. A.; Murrell, L. L.; Sherman, L. G.; Soled, S. J. Phys. Chem. 1987, 91, 1526.
- (16) Ivin, K. J; Mol, J. C. Olefin Metathesis and Metathesis Polymerization; Academic Press: London, 1997.
 - (17) Baileg, G. C. Catal. Rev. 1969 37.
- (18) Wang, Y.; Chen, W.; Yang, W.; Xie, Z.; Xu, W.; Huang, D. Appl. Catal. A: Gen. 2003, 250, 25.
- (19) Verpoort, F.; Bossuyt, A. R.; Verdonck, L. J. Mol. Catal. A: Chem. 1995, 95, 75.
 - (20) Chen, J. P.; Yang, R. T. Appl. Catal. A: Gen. 1992, 80, 135. (21) Djerad, D.; Tifouti, L.; Crocoll, M.; Weisweiler, W. J. Mol. Catal.
- A: Chem. 2004, 208, 257
 - (22) Baltin, G.; Koser, H.; Wedlandt, K. P. Catal. Today 2002, 75, 339. (23) Ai, M. J. Catal. 1977, 49, 305
 - (24) Wachs, I. E. Catal. Today 1996, 27, 437.
- (25) Thomas, R.; Kerkhof, F. P. J. M.; Moulijn, J. A.; Medema, J.; J. de Beer, V. H. J. Catal. 1980, 61, 559.
- (26) Tiltarelli, P.; Iannibello, A.; Villa, P. J. Solid State Chem. 1981, 37,95
- (27) Chen, S. S.; Wachs, I. E.; Murrell, L. L.; Wang, L.; Hall, W. K. J. Phys. Chem. 1984, 88, 5831.

(28) Biloen, P.; Pott, G. J. Catal. 1973, 30, 169.

- (29) Kim, D. S.; Ostromecki, M.; Wachs, I. E. J. Mol. Catal. A: Chem. 1996, 106, 93
- (30) Horsley, J. A.; Wachs, I. E.; Brown, J. M.; Via, G. H.; Hardcastle, F. D. J. Phys. Chem. 1987, 91, 4014.
- (31) Ostromecki, M. M.; Burcham, L. J.; Wachs, I. E. J. Mol. Catal. A 1998, 132, 43. Ostromecki, M. M.; Burcham, L. J.; Wachs, I. E. J. Mol. Catal. A 1998, 132, 59.
- (32) Gielgens, L. H.; Van Kampen, M. G.; Broek, M. M.; van Hardeveld, R.; Ponec, V. J. Catal. 1995, 154, 201.
- (33) Fernandez-Garcia, M.; Martinez-Arias, A.; Fuerte, A.; Conesa, J. C. J. Phys. Chem. B. 2005, 109, 6075.
- (34) Gutierrez-Alejandre, A.; Castillo, P.; Ramirez, J.; Ramis, G.; Busca, G. *Appl. Catal., A: Gen.* **2001**, *216*, 181.
- (35) Teoh, L. G.; Shieh, J.; Lai, W. H.; Hung, I. M.; Hon, M. H. J. Alloys Compd. 2005, 396, 251.
- (36) Morandi, S.; Ghiotti, G.; Chiorino, A.; Comini, E. Thin Solid Films 2005, 490, 74.
- (37) Glezos, N.; Douvas, A. M.; Argitis, P.; Saurenbach, F.; Chrost, J.; Livitsanos, C. Microelectron. Eng. 2006, 83, 1757.
- (38) Tarlani, A.; Abedini, M.; Khabaz, M.; Amini, M. M. J. Colloid Interface Sci. 2005, 292, 486-492.
- (39) Youn, M. H.; Kim, H.; Jung, J. C.; Song, I. K.; Barteau, K. P.; Barteau, M. A. J. Mol. Catal. A: Chem. 2005, 241, 227.
- (40) Wachs, I. E.; Kim, T.; Ross, E. I. Catal. Today 2006, 116, 162. (41) Kuba, S.; Che, M.; Grasselli, R. K.; Knoezinger, H. J. Phys. Chem. B 2003, 107, 3459.
- (42) Eibl, S.; Gates, B. C.; Knoezinger, H. Langmuir 2001, 17, 107.
- (43) Hernandez, M. L.; Montoya, J. A.; Del Angel, P.; Hernandez, I.; Espinosa, G.; Llanos, M. E. Catal. Today 2006, 116, 169.
- (44) Egues, S.; de Resende, N. S.; Schmal, M. Stud. Surf. Sci. Catal. 2002, 143, 933
- (45) Gao, B.; Ma, Y.; Cao, Y.; Yang, W.; Yao, J. J. Phys. Chem. B 2006, 110, 14391.
- (46) Barton, D. G.; Shtein, M.; Wilson, R. D.; Soled, S. L.; Iglesia, E. J. Phys Chem. B 1999, 103, 630.
- (47) Gazzoli, D.; Valigi, M.; Dragone, R.; Marucci, A.; Mattei, G. J. Phys. Chem. B 1997, 101, 11129.
- (48) Gutierrez-Alejandre, A.; Ramirez, J.; Busca, G. Catal. Lett. 1998, 56, 29.
- (49) Weckhuysen, B. M.; Schoonheydt, R. A. Catal. Today 1999, 49, 441.
- (50) Gao, X.; Wachs, I., J. Phys. Chem. B 2000, 104, 1261.
- (51) Tian, H.; Ross, E. I.; Wachs, I. E. J. Phys. Chem. B 2006, 110, 9593
- (52) Weber, R. S. J. Catal. 1995, 151, 470.

- (54) Catana, G.; Rao, R. R.; Weckhuysen, B. M.; Van Der Voort, P.; Vansant, E. F.; Schoonheydt, R. A. J. Phys. Chem. B **1998**, *102*, 8005.
- (55) Okada, K; Morikawa, H.; Marumo, F.; Iwai, S. Acta. Crystallogr. 1975, B31, 1200.
- (56) Knee, F.; Condrate, R. A. J. Phys Chem. Solids 1979, 40, 1145.
 (57) Finke, R. G.; Rapko, B.; Saxton, R. J.; Domaille, P. J. J. Am. Chem. Soc. 1986, 108, 2947.
- (58) Baronetti, T.; Briand, L. E.; Sedran, U.; Thomas, H. J. Appl. Catal. 1998, 172, 265.
- (59) Gambaro, L. A.; Briand, L. E. Appl. Catal. A: Gen. 2004, 264, 151.
- (60) Briand, L. E.; Thomas, H. J.; Baronetti, G. T. Appl. Catal. A: Gen. 2000, 201, 191.
- (61) Lyon, D.; Miller, W.; Novet, T.; Domaille, P.; Evitt, E.; Johnson, D.; Finke, R. J. Am. Chem. Soc. **1991**, 113, 7209.
 - (62) Kubelka, P.; Munk, F. Z. Tech. Phys. 1931, 12, 593.
- (63) Delgass, W. N.; Haller, G. L; Kellerman, R.; Lunsford, J. H. *Spectroscopy in Heterogeneous Catalysis*; Academic Press: New York, 1979; p 86.
- (64) Hardcastle, F. D.; Wachs, I. E. J. Raman Spectrosc. 1995, 26 (6), 397.
- (65) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; John Wiley & Sons, Inc.: New York, 1986.
 (66) Fierro, J. L. G., Ed.; Metal Oxides: Chemistry and Applications;
- (67) Hardcastle, F. D. Ph.D. Dissertation, Lehigh University, Bethlehem,
- (6) Hardestele, F. D. Th.D. Dissertation, Length Oniversity, Bernetient, PA; University Microfilms International, Ann Arbor, MI, 1990.
- (68) Hardcastle, F. D.; Wachs, I. E. J. Mol. Catal. 1984, 46,173.
 (69) Chan, S. S.; Wachs, I. E.; Murrell, L. L. J. Catal. 1984, 90, 150.
 (70) Vaidyanathan, N.; Houalla, M.; Hercules, D. M. Surf. Interface Anal. 1998, 26, 415.

- (71) Vaidyanathan, N.; Hercules, D. M.; Houalla, M. Anal. Bioanal. Chem. 2002, 373, 547.
- (72) Vuurman, M. A.; Wachs, I. E. J. Phys. Chem. 1992, 96, 5008.
- (73) Gao, X.; Bare, S. R.; Fierro, J. L.; Banares, M. A.; Wachs, I. E. J. Phys. Chem. B 1998, 102, 5653.
- (74) Kim, D. S.; Ostromecki, M.; Wachs, I. E. Catal. Lett. 1995, 33, 209
- (75) Weinstock, N.; Schulze, H.; Muller, A. J. Chem. Phys. 1973, 59, 5063.
- (76) Barton, D. G.; Soled, S. L.; Iglesia, E. Top. Catal. 1998, 6, 87.
- (77) Hilbrig, F.; Gobel, H. E.; Knozinger, H.; Schmelz, H.; Lengeler, B. J. Phys. Chem. **1991**, 95, 6973.
- (78) a. Chan, S. S.; Wachs, I. E.; Murrell, L. L.; Dispenziere, N. C., Jr. J. Catal. 1985, 92, 1.
- (79) Wells, A. F. *Structural Inorganic Chemistry*; Oxford University: London, 1984.
 - (80) Nakka, L.; Wachs, I. E. Manuscript in preparation.
- (81) Martin, C.; Malet, P.; Solana, G.; Rives, V. J. Phys. Chem. B 1998, 102, 2759.
- (82) Thomas, R.; Moulijn, J. A.; de Beer, V. H. J.; Medema, J. J. Mol. Catal. **1980**, *8*, 161.
- (83) Van Roosmalen, A. J.; Koster, D.; Mol, J. C. J. Phys. Chem. 1980, 84, 3075.
 - (84) Colque, S.; Payen, E.; Grange, P. J. Mater. Chem. 1994, 4, 1343.
 - (85) Banares, M. A.; Hu, H.; Wachs, I. E. J. Catal. 1995, 155, 249.
 - (86) Kasztelan, S; Payen, E.; Moffat, J. B. J. Catal. 1988, 112, 320.
 - (87) Hardcastle, F. D.; Wachs, I. E. J. Raman Spectrosc. 1990, 21, 683.
- (88) Hardcastle, F. D.; Wachs, I. E. J. Raman Spectrosc. 1995, 26 (6),
- 397.
- (89) Kim, T.; Burrows, A.; Kiely, C. J.; Wachs, I. E. J. Catal. 2007, 246 (2), 370.
- (90) Lee, E. L.; Wachs, I. E. Manuscript in preparation.
- (91) Salvati, L.; Makovsky, L. E.; Stencel, J. M.; Brown, F. R.; Hercules,
 D. H. J. Phys. Chem. 1981, 85, 3700.